Rapid-Sequence Induction For Emergency Intubation

Rapid-Sequence Intubation (RSI)

Jack CF Chong, MD
新光醫院 急診科主治醫師

Purpose of RSI

- RSI
 - Rapidly induce anesthesia
 - Rapidly achieve N-M blockade (paralysis)

- Purpose
 - Facilitate intubation
 - Blunt CV & ICP responses to intubation

Infant v.s. Adult Airways

Difficult Intubation

- Congenital anomaly
 - difficulty visualizing the cords
- Trauma / tumor
 - difficulty opening the mouth, airway compression, and/or hemorrhage
- Obstruction / infection
 - difficulty visualizing the cords

Indications for Intubation

- Protect airway
- Respiratory failure
- IICP / brain herniation
- Decompensated shock

Proceed to RSI !!
Prepare for RSI: SOAP-ME

- **S**: Suction
- **O**: Oxygen
- **A**: Airway Equipment
- **P**: Pharmacology
- **ME**: Monitoring Equipment

SOAP-ME

- **Airway Equipment**
 - Oral and nasal airways
 - Bag-valve-mask (BVM) devices and masks
 - Endotracheal (ET) tubes and stylets
 - Laryngoscope handles and blades
 - Magill forceps
 - Surgical airway equipment
 - Tracheostomy tubes

- **P** - Pharmacology
 - Atropine
 - Lidocaine
 - Sedatives
 - Ketamine, BDZ, thiopental, fentanyl, etomidate, propofol
 - N-M blocking agents
 - Succinylcholine, vecuronium, rocuronium

- **ME** - Monitoring Equipment
 - ECG monitor
 - Pulse oximeter
 - BP monitor
 - End-tidal CO2 detector / monitor

RSI 之步骤: Overview

- AMPLE & anatomy
- Prepare: SOAP-ME
- Preoxygenation: 100% O2 +/- BVM
- Premedications
- Paralysis
- Pressure: Sellick maneuver
- Pass the tube
- Check & secure the tube
Initial Assessment: History

- **A-M-P-L-E**
 - Allergies
 - Medications, drugs of abuse
 - Past medical problems, problems with anesthesia
 - Last meal
 - Events, including prehospital course

Anatomic Assessment

- **Head:**
 - Trauma
- **Face / mouth:**
 - Trauma, open mouth, tongue size, uvula, loose teeth, dentures
- **Neck / C-spine:**
 - Trauma, masses / hematomas, short thick neck, tracheal shift
- **Brief NE**
 - Document any neurologic deficits before paralysis

Preoxygenation

- Adequate ventilation
 - 100% O2 via non-rebreathing mask
- Inadequate spontaneous ventilation
 - 100% O2 via BVM
- Apnea without hypoxemia
 - Up to 30 seconds

Premedication

- **Atropine**
 - Function
 - Prevent / treat bradycardia
 - Decrease secretions
 - Indications
 - Age < 1Y
 - Age < 5Y receiving succinylcholine (SCh)
 - Any patient receiving a second dose of SCh
 - Any patient with bradycardia at time of intubation
 - Dose: 0.02 mg/kg, min 0.1 mg, max 0.5 mg
- **Lidocaine**
 - Blunt ICP response to intubation
 - Dose:
 - 1 mg/kg, slow IV push
 - 1 to 2 minutes before the paralytic drug
Sedative Agents

♦ Induce unconsciousness
 – Minimize reflex responses to intubation
♦ Choice and dose
 – Depend on clinical settings

Thiopental

♦ Short-acting barbiturate
♦ Benefits in head trauma
 – Decreases ICP
 – Blunts ICP response to intubation
♦ Myocardial depressant
 – Avoid or use low dose when hypotension or hypovolemia present
♦ Dose: 3-5 mg/kg IV

Ketamine

– Dissociative anesthetic agent
– Unaware of surroundings
– Analgesia and amnesia
– Maintains airway reflexes
– Cardiorespiratory stability: may increase BP, HR, cardiac output
– Bronchodilating effect
– 1-2 mg/kg IV or 4-7 mg/kg IM

Ketamine

♦ Hallucinations, nightmares, and "emergence reactions"
 – Adolescents and adults
 – BDZ may prevent emergence reactions
♦ Increase ICP
 – Contraindicated in head trauma
♦ Increase oral & airway secretions
 – Can use in combination with atropine

Benzodiazepines

♦ Sedative, amnestic, anticonvulsant properties
♦ No analgesic effects
♦ Potential cardiovascular and respiratory depression
♦ Midazolam has fastest onset, shortest duration; dose = 0.1-0.2 mg/kg, max 5 mg
♦ Induction doses in RSI are much higher than usual doses for sedation

Fentanyl

♦ Rapid-onset, short-acting narcotic
♦ Potential uses in RSI
 – Sedative and induction agent
 – Dose for induction (2-10 ug/kg) of unconsciousness much higher than dose for premedication or conscious sedation
Propofol, Etomidate

- Rapid onset, short duration
- Cerebral protective effects
- Cardiovascular depression uncommon with etomidate
- Propofol may decrease BP

Paralysis: N-M Blockade

- Depolarizing agents
 - Succinylcholine (SCh)
- Non-depolarizing agent
 - Vecuronium
 - Rocuronium
 - Pancuronium
 - Others

Succinylcholine

- Binds to ACh receptors on muscle and depolarizes muscle persistently
- Fastest onset
- Shortest duration
- Dose:
 - 1.0-1.5 mg/kg (BW > 10 kg)
 - 1.5-2.0 mg/kg (BW < 10 kg)

Succinylcholine

- Increased intragastric pressure
- Increased intraocular pressure
- Increased ICP
 - Mechanism unclear
 - Prevent or blunt with:
 - Lidocaine
 - Induction agents
 - Small dose nondepolarizing NMB agent

Succinylcholine

- Bradycardia
 - Premedicate young children with atropine
- Tachycardia
 - Sympathetic stimulation
- Hyperkalemia
 - Develops several days after burns, massive muscle trauma, neurologic injuries, various neuromuscular diseases
- Fasciculations
 - Pain, increase intragastric / intraocular pressure

Nondepolarizing NMB Agents

- Compete with ACh for muscle ACh receptors
- No muscle stimulation or fasciculations
- Slower onset, longer duration than SCh
- Usually given before induction agent because of slower onset
Vecuronium (1)
- May be used as paralyzing agent in RSI, especially if SCh contraindicated
- Minimal cardiovascular effects
- "Standard" dose: 0.1 mg/kg
- RSI dose: 0.2 to 0.3 mg/kg, has faster action and prolonged duration
- Defasciculating dose: 0.01 mg/kg

Vecuronium (2)

<table>
<thead>
<tr>
<th>Purpose</th>
<th>Dose, mg/kg</th>
<th>Onset</th>
<th>Duration, min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Defasculation</td>
<td>0.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RSI</td>
<td>0.2-0.3</td>
<td>60-90</td>
<td>90-120</td>
</tr>
<tr>
<td>Paralysis after intubation</td>
<td>0.1</td>
<td>2-3 min</td>
<td>25-40</td>
</tr>
</tbody>
</table>

Rocuronium
- Fastest acting nondepolarizing NMB agent
- Dose: 0.8-1.2 mg/kg
- Duration: Up to 60 minutes

Defasculation
- Agents and dosages
 - Vecuronium 0.01 mg/kg
 - Pancuronium 0.01 mg/kg
- Indication
 - Age > 5Y
 - Succinylcholine for paralysis

5 yr boy, 20 kg
- A: Unconscious
- B: RR 10
- C: PR 140, BP 70/?
- D: E2M4V2, P 5/3

Head Injury / IICP
- Atropine?
- Lidocaine?
- Defasciculating agents?
 - Vecuronium, pancuronium
- Sedatives?
 - Ketamine, BDZ, thiopental, fentanyl, etomidate, propofol
- N-M blocking agents?
 - Succinylcholine, vecuronium, rocuronium
Head Injury / IIICP
✓ Atropine
✓ Lidocaine
✓ Defasciculating dose of vecuronium
✓ Thiopental
 • Ketamine will increase ICP
✓ Succinylcholine

11-year-old girl
♦ PH: Bed-ridden due to cerebral palsy
♦ PI: Fever and altered mental status
♦ A: Obtunded, rigidity
♦ B: Tachypneic
♦ C: Skin, hot and dry

Muscle disease or paralysis
 – Atropine?
 – Lidocaine?
 – Defasciculating agents?
 – Vecuronium, pancuronium
 – Sedatives?
 • Ketamine, BDZ, thiopental, fentanyl, etomidate, propofol
 – N-M blocking agents?
 • Succinylcholine, vecuronium, rocuronium

HR 135; RR 36; BP 80/60; T 40° C ;
BW 18 kg; SO2 84% (room air)

What are your options now?
♦ After etomidate is given, patient is paralyzed with 1.0 mg/kg of Rocuronium
♦ First attempt at intubation fails
Nondepolarizing NMB agent

- Failed intubation
 - Begin BVM ventilation
 - Prepare for another intubation attempt
 - Consider giving a reversal agent
 - Neostigmine
 - Edrophonium
 - Pyridostigmine
 ** Pretreat with atropine

Asthma

- A: Extremely anxious
- B: Retractions in all areas
- C: Pale and diaphoretic

- No response to O2, albuterol, and epinephrine.
- Lethargic, HR 120; RR 10; SO2 82%

Asthma

- Atropine?
- Lidocaine?
- Defasciculating agents?
 - Vecuronium, pancuronium
- Sedatives?
 - Ketamine, BDZ, thiopental, fentanyl, etomidate, propofol
- N-M blocking agents?
 - Succinylcholine, vecuronium, rocuronium

Asthma

- Atropine
 - Lessen secretions due to use of ketamine
- Lidocaine
- Defasciculating dose of vecuronium
- Ketamine + Midazolam
 - Thiopental may cause bronchospasm
- BDZ decrease emergence reaction
- Succinylcholine

Post-intubation

- Agents to lessen agitation
 - Benzodiazepine
 - For sedation
 - E.g. Dormicum, lorazepam
 - Nondepolarizing NMB agent
 - For continued paralysis
 - E.g. Vecuronium

Patient intubated after atropine, ketamine, midazolam and SCh given in RSI

- 6.0-mm ET tube inserted and secured
- Patient agitated and fighting ventilator

What agents can be used to lessen the agitation?
Always have “plan B”